首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2062篇
  免费   147篇
  国内免费   101篇
  2023年   20篇
  2022年   19篇
  2021年   16篇
  2020年   54篇
  2019年   50篇
  2018年   39篇
  2017年   51篇
  2016年   62篇
  2015年   61篇
  2014年   72篇
  2013年   119篇
  2012年   60篇
  2011年   101篇
  2010年   37篇
  2009年   97篇
  2008年   78篇
  2007年   86篇
  2006年   91篇
  2005年   86篇
  2004年   74篇
  2003年   83篇
  2002年   53篇
  2001年   58篇
  2000年   53篇
  1999年   63篇
  1998年   74篇
  1997年   52篇
  1996年   51篇
  1995年   87篇
  1994年   55篇
  1993年   40篇
  1992年   44篇
  1991年   34篇
  1990年   37篇
  1989年   33篇
  1988年   39篇
  1987年   16篇
  1986年   19篇
  1985年   38篇
  1984年   24篇
  1983年   8篇
  1982年   18篇
  1981年   14篇
  1980年   5篇
  1979年   9篇
  1978年   7篇
  1977年   9篇
  1976年   4篇
  1975年   4篇
  1973年   2篇
排序方式: 共有2310条查询结果,搜索用时 46 毫秒
1.
Case histories and proposed mechanisms formicrobiologically influenced corrosion of metals andalloys by metal depositing microorganisms arereviewed. Mechanisms with indirect participation ofthese microorganisms, usually iron- and manganeseoxidizing species, are distinguished from anothermechanism which accounts specifically for theelectrochemical properties of deposits containingoxides and hydroxides of Mn in higher oxidationstates. The possible influence of such deposits whichwere formed microbiologically is evaluated. Theevaluation is based on the principles ofelectrochemical corrosion of metals and on theelectrochemical properties of Mn3+/4+- compounds.After briefly reviewing the microbiologicalMn-oxidation, experimental evidence for the predictedcorrosion by such deposits is provided and a model formicrobiologically influenced corrosion by manganeseoxidizing microorganisms is proposed for stainlesssteel. Possible consequences of the model andpractical aspects of such a corrosion are discussed.  相似文献   
2.
The effect of NO2 fumigation on root N uptake and metabolism was investigated in 3-month-old spruce (Picea abics L. Karst) seedlings. In a first experiment, the contribution of NO2 to the plant N budget was measured during a 48 h fumigation with 100mm3m?3 NO2. Plants were pre-treated with various nutrient solutions containing NO2 and NH4+, NO3? only or no nitrogen source for 1 week prior to the beginning of fumigation. Absence of NH4+ in the solution for 6d led to an increased capacity for NO3? uptake, whereas the absence of both ions caused a decrease in the plant N concentration, with no change in NO3? uptake. In fumigated plants, NO2 uptake accounted for 20–40% of NO3? uptake. Root NO3? uptake in plants supplied with NH4+plus NO3? solutions was decreased by NO2 fumigation, whereas it was not significantly altered in the other treatments. In a second experiment, spruce seedlings were grown on a solution containing both NO2 and NH4+ and were fumigated or not with 100mm3m?3 NO2 for 7 weeks. Fumigated plants accumulated less dry matter, especially in the roots. Fluxes of the two N species were estimated from their accumulations in shoots and roots, xylem exudate analysis and 15N labelling. Root NH4+ uptake was approximately three times higher than NO3? uptake. Nitrogen dioxide uptake represented 10–15% of the total N budget of the plants. In control plants, N assimilation occurred mainly in the roots and organic nitrogen was the main form of N transported to the shoot. Phloem transport of organic nitrogen accounted for 17% of its xylem transport. In fumigated plants, neither NO3? nor NH4+ accumulated in the shoot, showing that all the absorbed NO2 was assimilated. Root NO3? reduction was reduced whereas organic nitrogen transport in the phloem increased by a factor of 3 in NO2-fimugated as compared with control plants. The significance of the results for the regulation of whole-plant N utilization is discussed.  相似文献   
3.
《Current biology : CB》2020,30(10):1801-1808.e5
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   
4.
Decreased hydraulic conductance in plants at elevated carbon dioxide   总被引:3,自引:2,他引:1  
Previous work indicated that long-term exposure to elevated carbon dioxide levels can reduce hydraulic conductance in some species, but the basis of the response was not determined. In this study, hydraulic conductance was measured at concentrations of both 350 and 700 cm3 m–3 carbon dioxide for plants grown at both concentrations, to determine the reversibility of the response. In Zea mays and Amaranthus hypochondriacus , exposure to the higher carbon dioxide concentration for several hours reduced whole-plant transpiration rate by 22–40%, without any consistent change in leaf water potential, indicating reversible reductions in hydraulic conductance at elevated carbon dioxide levels. Hydraulic conductance in these species grown at both carbon dioxide concentrations responded similarly to measurement concentration of carbon dioxide, indicating that the response was reversible. In Glycine max , which in earlier work had shown a long-term decrease in hydraulic conductance at elevated carbon dioxide levels, and in Abutilon theophrasti , no short-term changes in hydraulic conductance with measurement concentration of carbon dioxide were found, despite lower transpiration rates at elevated carbon dioxide. In G. max and Medicago sativa , growth at high dew-point temperature reduced transpiration rate and decreased hydraulic conductance. The results indicate that both reversible and irreversible decreases in hydraulic conductance can occur at elevated carbon dioxide concentrations, and that both could be responses to reduced transpiration rate, rather than to carbon dioxide concentration itself.  相似文献   
5.
6.
7.
The continuous rise of CO2 concentrations in the atmosphere is reducing plant nutritional quality for herbivores and indirectly affects their performance. The whitefly (Bemisia tabaci, Gennadius) is a major worldwide pest of agricultural crops causing significant yield losses. This study investigated the plant‐mediated indirect effects of elevated CO2 on the feeding behavior and life history of B. tabaci Mediterranean species. Eggplants were grown under elevated and ambient CO2 concentrations for 3 weeks after which plants were either used to monitor the feeding behavior of whiteflies using the Electrical Penetration Graph technique or to examine fecundity and fertility of whiteflies. Plant leaf carbon, nitrogen, phenols and protein contents were also analyzed for each treatment. Bemisia tabaci feeding on plants exposed to elevated CO2 showed a longer phloem ingestion and greater fertility compared to those exposed to ambient CO2 suggesting that B. tabaci is capable of compensating for the plant nutritional deficit. Additionally, this study looked at the transmission of the virus Tomato yellow leaf curl virus (Begomovirus) by B. tabaci exposing source and receptor tomato plants to ambient or elevated CO2 levels before or after virus transmission tests. Results indicate that B. tabaci transmitted the virus at the same rate independent of the CO2 levels and plant treatment. Therefore, we conclude that B. tabaci Mediterranean species prevails over the difficulties that changes in CO2 concentrations may cause and it is predicted that under future climate change conditions, B. tabaci would continue to be considered a serious threat for agriculture worldwide.  相似文献   
8.
Summary A differential infrared CO2 analyser combined with a 12 channel gas handling system have been used for the measurement of CO2 evolution rates of soil samples. A constant flow of air over the soil was maintained during the incubation period. Automatic sequential measurement and recording of the increase of the CO2 content of the flushed air of the 12 channels lasted 24 min with a dwell time of 2 min per channel. This technique has proven to be very useful for accurate and rapid measurement of the biological activities in untreated and treated soil.  相似文献   
9.
ABSTRACT. A non-dispersive infrared gas analyser equipped with a Luft-type sonic detector and flow-through reference cell was automated to monitor the total volume of carbon dioxide (CO2) respired by single insects or groups of insects. The infrared analyser was interfaced with an integrator for quantification, a microprocessor to control intermittent air flow through the insect respiration chambers, and a microcomputer for data storage and reduction. This technique has been used to monitor the CO2 Output of diapausing and non-diapausing mature fifth instar larvae and of developing pupae of the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). The resulting data were accurate, quantitative and reproducible.  相似文献   
10.
Nitrogen dioxide less than 100 ppm in air induced lipid peroxidation of liposome composed of l-palmitoyl-2-arachidonylphosphatidylcholine as assessed by thiobarbituric acid reactivity. The nitrogen dioxide-induced lipid peroxidation was enhanced by cysteine, glutathione and bovine serum albumin. While the activity of nitrogen dioxide in air to induce single strand breaks of supercoiled plasmid DNA was low, the breaking was remarkably enhanced by cysteine, glutathione and bovine serum albumin. ESR spin trapping using 5,5-dimethyl-1-pyrroline N-oxide showed that certain strong oxidant(s) were generated by interaction of nitrogen dioxide and cysteine. The spin trapping using 3,5-dibromo-4-nitrosobenzene-sulfonate suggested that sulfur-containing radicals were generated by interaction of nitrogen dioxide and cysteine or glutathione. Hence, certain sulfur-containing radicals generated by the interaction which could effectively induce lipid peroxidation and DNA strand breaks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号